New Performance Modeling Methods for Parallel Data Processing Applications
نویسندگان
چکیده
منابع مشابه
Parleda: a Library for Parallel Processing in Computational Geometry Applications
ParLeda is a software library that provides the basic primitives needed for parallel implementation of computational geometry applications. It can also be used in implementing a parallel application that uses geometric data structures. The parallel model that we use is based on a new heterogeneous parallel model named HBSP, which is based on BSP and is introduced here. ParLeda uses two main lib...
متن کاملHigh Performance Computing Applications Using Parallel Data Processing Units
Multicore processors are growing with respect to the number of cores on a chip. In a parallel computation context, multicore platforms have several important features such as exploiting multiple parallel processes, having access to a shared memory with noticeably lower cost than the distributed alternative and optimizing different levels of parallelism. In this paper, we introduce the Parallel ...
متن کاملa new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولModeling Parallel Applications Performance on Heterogeneous Systems
The current technologies have made it possible to execute parallel applications across heterogeneous platforms. However, the performance models available do not provide adequate methods to calculate, compare and predict the applications performance on these platforms. In this paper, we discuss an enhanced performance evaluation model for parallel applications on heterogeneous systems. In our an...
متن کاملNew Python-based methods for data processing
Current pixel-array detectors produce diffraction images at extreme data rates (of up to 2 TB h(-1)) that make severe demands on computational resources. New multiprocessing frameworks are required to achieve rapid data analysis, as it is important to be able to inspect the data quickly in order to guide the experiment in real time. By utilizing readily available web-serving tools that interact...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACM Transactions on Modeling and Computer Simulation
سال: 2019
ISSN: 1049-3301,1558-1195
DOI: 10.1145/3309684